Abstract

Uniaxial or triaxial compression test of cylindrical rock specimens using rock mechanics testing machine is a basic experimental method to study the strength and deformation characteristics of rock and the development process of rock fracture. Extensive literature review has been conducted on this issue; meanwhile, experimental and numerical studies have been conducted on the stress-drop effect on the brittleness of rock materials. A plastic flow factor of λ is proposed to describe the stress-drop effect. Evaluation methods of the factor λ corresponding to the four yield criteria of rock mass are proposed. Those four yield criteria are Tresca criterion, von-Mises criterion, Mohr-Coulomb criterion and Drucker-Prager criterion. For simplicity purposes, an engineering approximation approach has been proposed to evaluate the stress-drop with a non-zero strain increment. Numerical simulation results validated the effectiveness of the plastic flow factors λ as well as the engineering approximation approach. Based on the results in this study, finite element code can be programmed for brittle materials with stress-drop, which has the potential to be readily incorporated in finite element codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call