Abstract

AbstractIonic transport in porous anodic alumina (PAA) films during steady‐state growth was simulated, including effects of ionic migration in the electric potential and stress gradients, as well as material flow. The calculated flow patterns display similar characteristics to those revealed by experimental studies. The results indicate that the stress field driving the flow originates from three sources: volume change at the metal–film interface during oxidation, the nonlinear current–electric field relationship governing ionic conduction, and insertion of species at the film–solution interface. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call