Abstract

ABSTRACTA stress-driven formation of self-assembled InGaAs islands has been studied by the growth on GaAs (100) substrates with sub-micron platinum stripe pattern. Islands or quantum dots preferentially nucleate at the boundary of metal patterns. In addition, a quantum dot-free region near the boundary of the metal pattern is found. Those results are attributed to the stress between metal stripe and GaAs surface, which produces a laterally stressed region around the metal stripe. Adatoms on this region preferentially migrate toward the edge of metal stripes with maximum stress. This result may show a possible way for the interconnection between randomly distributed self-assembled quantum dots and metal stripes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call