Abstract

Statement of problemThe type of veneer preparation is often chosen according to the patient’s tooth structure and occlusion. Taking biomechanics into account in this decision-making process provides the clinician with more technical information on how to improve the clinical longevity of restorations. However, biomechanical analyses of veneer preparation designs are sparse. PurposeThe purpose of this 3-dimensional (3D) finite element analysis with microcomputed tomography (µCT) data obtained from realistic models was to assess the influence of different preparations for ceramic and composite resin veneers on restoration and resin layer stress distribution. Material and methodsFour replicas of a central incisor were printed and prepared for laminate veneers with 4 different incisal edge designs: shoulder (SH), palatal chamfer (PC), palatal chamfer and oblique fracture involving the distal angle (OF-PC), and palatal chamfer involving horizontal incisal fracture (IF-PC). After fabrication and cementation of the veneers, the restored replicas were assessed with µCT, and 3D finite element models were built. A 100-N load was applied on the palatal surface at 60 and 125 degrees relative to the longitudinal axis. Maximum principal stress and stress distribution on the veneers, cement layer, and tooth structure were calculated and analyzed. ResultsThe SH preparation exhibited better stress distribution than the PC preparation, and the cement layer and the veneer were subjected to lower stress. The IF-PC preparation had better stress distribution than the OF-PC. The shoulder and IF-PC showed higher stress on laminate veneers, but lower stress on the cement layer. Ceramic veneers exhibited lower stress than composite resin veneers. ConclusionsThe different incisal preparations for laminate veneers influenced stress distribution on restorations and on the resin cement layer. The shoulder type preparation showed better stress distribution and the composite resin veneers showed unfavorable results compared with the ceramic veneers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.