Abstract
A new theoretical solution based on Layerwise theory is presented to determine the stress distribution in a simply-supported cylindrical sandwich sector with a functionally graded carbon nanotube core and piezoelectric face sheets subjected to low-velocity impact. The spherical elastic ball hits the top face sheet of the sector at an initial velocity of 50 m/s. The classical non-adhesive elastic contact theory and Hunter's relationship were used to determine the normal contact pressure distribution in terms of time and distance of the contact location. Moreover, Hamilton's principle and Maxwell's static equation were used to obtain the nineteen equations of motion. The numerical code was written to solve these nonlinear equations and the stress components in each layer were calculated in terms of time. In addition, it was assumed that the out-of-shell displacement of the sector at each layer is a quadratic polynomial function of the radial component in addition to a function of the coordinate components within the shell. Due to this assumption, the normal out-of-shell strain is not only zero, or not even a constant, but it changes in the form of a linear function along with the thickness of each layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.