Abstract

The local stress–strain distribution in a unit cell of a textile laminate depends on the distance of the ply to the surface, the number of plies in the laminate, and the stacking sequence. A conventional meso FE analysis employs boundary conditions for a unit cell of the textile composite based on the assumption of periodicity in the thickness direction. In that case, the stress concentration can be drastically underestimated, especially in outer plies. This paper describes the interaction of plies, local stresses and displacements. To avoid the analysis of the whole laminate and to reduce it to the boundary value problem on one unit cell only, novel boundary conditions are introduced. These conditions are based on the analysis of a single unit cell: they account for the number of the plies in the laminate, distinguish between the outer and inner plies, and reproduce the meso stress–strain state with good precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.