Abstract
AbstractMn‐based hexacyanoferrate NaxMnFe(CN)6 (NMHFC) has been attracting more attention as a promising cathode material for sodium ion storage owing to its low cost, environmental friendliness, and its high voltage plateau of 3.6 V, which comes from the Mn2+/Mn3+ redox couple. In particular, the Na‐rich NMHFC (x > 1.40) with trigonal phase is considered an attractive candidate due to its large capacity of ≈130 mAh g−1, delivering high energy density. Its unstable cycle life, however, is holding back its practical application due to the dissolution of Mn2+ and the trigonal‐cubic phase transition during the charge–discharge process. Here, a novel hexacyanoferrate (Na1.60Mn0.833Fe0.167[Fe(CN)6], NMFHFC‐1) with Na‐rich cubic structure and dual‐metal active redox couples is developed for the first time. Through multiple structural modulation, the stress distortion is minimized by restraining Mn2+ dissolution and the trigonal‐cubic phase transition, which are common issues in manganese‐based hexacyanoferrate. Moreover, NMFHFC‐1 simultaneously retains an abundance of Na ions in the framework. As a result, Na1.60Mn0.833Fe0.167[Fe(CN)6] electrode delivers high energy density (436 Wh kg−1) and excellent cycle life (80.2% capacity retention over 300 cycles), paving the way for the development of novel commercial cathode materials for sodium ion storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.