Abstract
Abstract In this article, the stress–dilatancy relationship for crushed latite basalt is analysed by using Frictional State Theory. The relationship is bilinear, and the parameters α and β determine these two straight lines. At the initial stage of shearing, the mean normal stress increment mainly influences breakage, but at the advanced stage, it is shear deformation that influences breakage. At the advanced stage of shearing, the parameter αpt represents energy consumption because of breakage and βpt mainly represents changes in volume caused by breakage during shear. It is also shown that breakage effect is significant at small stress levels and the η-Dp plane is important to fully understand the stress–strain behaviour of crushed latite basalt in triaxial compression tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.