Abstract

Summary Perforation with shaped charges as a conventional well-completion technique is widely used in the oil industry. Different phenomena influence perforation performance and depth of penetration (DOP). The authors examined the effect of in-situ stresses and shot density on DOP and created fracture patterns in concrete and limestone samples with surface and polyaxial/triaxial-stress-loading conditions. To achieve this aim, we designed and developed a polyaxial-perforation test machine. We optimized the number of experimental tests using the Taguchi-design test method. The Taguchi orthogonal scheme is well-known and is a highly recommended method to optimize the number of required experiments (Taguchi 1990; Ross 1996; Jeyapaul et al. 2005; Gupta et al. 2014). Our experimental setup resembles vertical wells in the strike/slip-faulting regions and horizontal wells in the reverse-faulting regions. The results show that DOP is more controlled by stresses normal to the shooting direction in polyaxial tests than by the stress in the direction of penetration. DOP and the maximum hole diameter from the second charge had a direct relation with shot density. The DOP observed in polyaxial-loading conditions was a little lower than in the triaxial-loading mode, where the mean value of stresses normal to the shooting direction in the polyaxial tests was the same as the horizontal stresses in the triaxial tests. In both surface and triaxial-loading conditions, the patterns of perforation fractures were radial and regular, whereas the cracks created were oriented along the direction of maximum horizontal stress in the polyaxial tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call