Abstract
Research activities are currently being conducted to study multiphase flow in hydrate-bearing sediments (HBS). In this study, in view of the assumption that hydrates are evenly distributed in HBS with two major hydrate-growth patterns, i.e., pore filling hydrates (PF hydrates), wall coating hydrates (WC hydrates) and a combination of the two, a theoretical relative permeability model is proposed for gas-water flow through HBS. Besides, in this proposed model, the change in pore structure (e.g., pore radius) of HBS due to effective stress is taken into account. Then, model validation is performed by comparing the predicted results from the derived model with that from the existing model and test data. By setting the value of hydrate saturation to zero, our derived model can be reducible to the existing model, which demonstrates that the existing model is a special case of our model. The results reveal that, under the same saturation, relative permeability to water K rw (or gas K rg ) in PF hydrates is smaller than that in WC hydrates. Moreover, the morphological characteristics of relative permeability curve (relative permeability versus gas saturation) for WC hydrate and PF hydrate are different. Cited as : Lei, G., Liao, Q., Lin, Q., Zhang, L., Xue, L. Chen, W. Stress dependent gas-water relative permeability in gas hydrates: A theoretical model. Advances in Geo-Energy Research, 2020, 4(3): 326-338, doi: 10.46690/ager.2020.03.10
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.