Abstract

The cathodoluminescence (CL) spectrum arising from diamagnetic point defects of silicon oxynitride lattice was analyzed to extract quantitative information on local stress fields stored on the surface of a silicon nitride polycrystal. A calibration procedure was preliminarily made to obtain a relationship between CL spectral shift and applied stress, according to the piezo-spectroscopic effect. In this calibration procedure, we used the uniaxial stress field developed in a rectangular bar loaded in a four-point flexural jig. Stress dependence was clearly detected for the most intense spectral band of a doublet arising from diamagnetic ([triple bond]Si-Si[triple bond]) defects, which was located at around 340 nm. The shallow nature of the electron probe enabled the characterization of surface stress fields with sub-micrometer-order spatial resolution. As applications of the PS technique, the CL emission from [triple bond]Si-Si[triple bond] defects was used as a stress probe for visualizing the residual stress fields stored at grain-boundary regions and at the tip of a surface crack propagated in polycrystalline silicon nitride.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.