Abstract

The objective of this study is to develop a new family of aluminum alloys with superior stress corrosion cracking resistance (SCCR) and mechanical properties. This approach uses experimentally obtained stress corrosion resistance, tensile strength, and yield strength data from the literature and then performs hybrid multiobjective evolutionary optimization combined with multidimensional response surfaces. This software has the proven capability to deal with various alloy design applications using minimal amount of experimental data. The selected objectives in this study are superior stress corrosion resistance, tensile strength, and yield strength. The design variables are concentrations of alloying elements and the individual alloy tempers as they are important parameters that directly affect macroscopic properties and microscopic details of the alloy such as grains, phases, precipitates, etc. The computational trials yield optimal alloys' chemical compositions and standard thermal treatment protocols for the best combination of superior stress corrosion resistance and mechanical properties. Single-objective optimization results confirm the known experimental observations that dilute Al alloys yield the best corrosion resistance at the expense of tensile strength. Optimizations with two simultaneous objectives and more alloying elements create better trade-off solutions. Quality and number of initially available experimentally evaluated alloys have decisive effects on accuracy of this alloy design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.