Abstract
ABSTRACT This study investigated stress corrosion cracking (SCC) susceptibility in laser powder bed fusion (LPBF) printed 316L stainless steel under corrosive conditions. LPBF process inherently introduces residual stresses and surface defects that can compromise material integrity in aggressive environments. Post-processing techniques, specifically severe shot peening (SSP), heat treatments at 600°C and 900°C, and their combinations were employed to mitigate these issues. SCC testing in a boiling 25% NaCl solution assessed cracking over a period of five weeks. The results demonstrate that while SSP initially introduced compressive residual stresses potentially enhancing SCC resistance, subsequent mechanical deformation by U-bending diminished these benefits, leading to increased susceptibility to cracking. Tensile stresses induced by U-bending appeared to override the benefits of defect closure and reduced surface roughness, resulting in cracking. Notably, only specimens subjected to AB + SSP and HT600 + SSP conditions exhibited cracking during the testing period, highlighting the complex interplay between residual stresses, mechanical deformation, and SCC behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.