Abstract

Optical and electron metallographic studies of stress-corrosion cracks in Ti-8Al-lMo-lV have verified that the principal crack extension mechanism is cleavage of theα grains. There are two distinct crack morphologies which correspond to the two regimes of subcritical crack velocity. At low stress intensities(a ∞ K I) the microscopic crack front consists of small cleavage facets approximately 1 to 4α grain diameters in size, and ligaments of material which fracture by ductile rupture and corrosion. At high stress intensities (a ≅ constant), the crack front consists of large cleavage “fingers”, 20 to 50α grain diameters in length, separated by regions which fracture by a combination of cleavage (on a much smaller scale), ductile rupture, and corrosion. The transition from Stage I to Stage II crack propagation apparently occurs when the strain-energy release rate is sufficient to support two crack branches,i.e., KI≥ √2K Iscc. Thereafter, the diameter of the plastic zone at the crack tip remains constant, suggesting that the effective stress intensity at the tip of each branch is also invariant. The slip within the plastic zone is markedly nonhomogeneous, and trenches are often observed along the slip steps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call