Abstract

A fracture mechanics study of stress corrosion cracking (scc) of cold worked AISI 310 austenitic steel, and an experimental metastable austenite, was conducted in hot aqueous solutions of 44.7 wt pct MgCl2 and the results compared with previous studies on AISI 316 steel. Attention was directed towards Region II behavior where crack propagation rate (v) was independent of stress intensity (KI). The apparent activation energy of Region II was found to be in the range ~65 to 75 kJ/mol, independent of the relative proportions of intergranular and transgranular cracking. Also, electron diffraction studies of fracture surfaces showed that α′-martensite formation was not a pre-requisite for scc, although it may influence crack propagation rates. Cracking was discussed in terms of a hydrogen embrittlement model under hydrogen transport control in the austenite lattice. However, adsorption (chemisorption) effects on repassivation and dissolution behavior could not be eliminated from consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call