Abstract

Abstract The stress corrosion cracking (SCC) behavior of U-3/4% Ti, and uranium alloys 3/4% Quad, 1% Quad, and 1% Quint have been studied utilizing a linear elastic fracture mechanics approach. The threshold stress intensities for stress corrosion crack propagation for these alloys have been determined in distilled H2O and NaCl solutions containing 50 ppm Cl− and 21,000 ppm Cl−. All of the alloys studied may be classified as very susceptible to SCC in aqueous solutions since they exhibit SCC in distilled H2O (<1 ppm Cl−) and have low KIscc values in NaCl solutions. Crack extension in all of the alloys in all environments was transgranular and failure occurred by brittle quasicleavage fracture in NaCl solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.