Abstract

A parametric stress analysis of DT/X square-to-square and square-to-round tubular joints subjected to axial loads, in-plane, and out-of-plane bending moments has been performed using the finite element technique in order to provide a sound basis for using such sections in the design of complex structures. The results of this analysis are presented as a set of equations expressing the stress concentration factor as a function of the relevant geometric parameters for various loading conditions. A comparison is made between the results obtained for square-to-square and square-to-round tubular joints and those obtained for round-to-round tubular joints by other researchers. In general, the stress concentration factors for square-to-square tubular joints are the highest, followed by those of the corresponding round-to-round joints, with those of the corresponding square-to-round joints the lowest when the joints are subject to axial loads. In the case of in-plane bending moment, the stress concentration factors for square-to-square joints are generally still the highest, but followed by those of the corresponding square-to-round joints, with those of the corresponding round-to-round joints the lowest. However, the stress concentration factors for the three types of joint are comparable when they are subject to out-of-plane bending moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.