Abstract

The majority of tubular joints commonly found in offshore structures are in the form of multi-planar tubular joints, but very few investigations have been reported due to the complexity and high cost involved. The majority of research have been focused on the study of stress distribution at certain position such as saddle and crown points, and the hot spot stress (HSS) at other position along the weld toe of brace/chord intersection have been ignored. In this paper a 60° two-planar double KT (DKT) tubular joint is modelled as a finite element model from an offshore jacket platform. The effect of dimensionless geometrical parameters on the geometrically stress distribution and SCF distribution along the weld toe of inclined brace in axially loaded on the joint are investigated. Non-dimensional parameters that are varied include β, τ, γ and θ. Validation of the finite element model shown a good agreement to the global structural analysis results. The results of parametric studies show that the increase of the β leads to decrease of SCF. While the increase of the τ, γ and θ leads to increase of SCF. The peak SCF mostly occurs at the outer saddle point. The effect of parameters β, γ and θ on the SCF are greater than the effect of parameters τ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call