Abstract

The stress concentration factor around a circular hole in an infinite plate subjected to uniform biaxial tension and pure shear is considered. The plate is made of a functionally graded material where both Young’s modulus and Poisson’s ratio vary in the radial direction. For plane stress conditions, the governing differential equation for the stress function is derived and solved. A general form for the stress concentration factor in case of biaxial tension is presented. Using a Frobenius series solution, the stress concentration factor is calculated for pure shear case. The stress concentration factor for uniaxial tension is then obtained by superposition of these two modes. The effect of nonhomogeneous stiffness and varying Poisson’s ratio upon the stress concentration factors are analyzed. A reasonable approximation in the practical range of Young’s modulus is obtained for the stress concentration factor in pure shear loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.