Abstract

A high order accurate and fast algorithm is constructed for 2D stress problems on multiply connected finite domains. The algorithm is based on a Fredholm integral equation of the second kind with non-singular operators. The unknown quantity is the limit of an analytic function. On polygonal domains there is a trade-off between stability and rate of convergence. A moderate amount of precomputation in higher precision arithmetic increases the stability in difficult situations. Results for a loaded single edge notched specimen perforated with 1170 holes are presented. The general usefulness of integral equation methods is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call