Abstract

We demonstrate that silicon-polymer composite microbridges provide a robust means of water vapor detection at ambient pressure. Volumetric changes in the reactive polymer alter the tension in a doubly clamped structure leading to large and rapid changes in the resonance frequency. We demonstrate stress-based sensing of water vapor in ambient pressure nitrogen using doubly clamped buckled beams coated with a hygroscopic polymer. We show stress sensitivity of around 20 kPa (∼170 ppb of water vapor) and subsecond response time for coated microbridges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.