Abstract

This paper presents a new technique, which can apply the stress-based finite element method to Euler-Bernoulli beams. An approximated bending stress distribution is selected, and then the approximated transverse displacement is determined by twice integration. Due to the satisfaction of compatibility, the integration constants are determined by the boundary conditions related to transverse displacement and rotation. To compare with the displacement-based finite element method, this technique provides the continuities of not only transverse displacement and rotation but also stress at nodes. Besides, the boundary conditions related to stress are satisfied. Two numerical examples demonstrate the validity of this technique. The results show that the errors are smaller than those generated by the displacement-based finite element method for the same number of degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.