Abstract
Studies have shown that stress caused by lack of physical activity disrupts the normal pattern of glucocorticoid secretion which adversely affects the reproductive axis. We studied the effect of chronic movement restriction on ovarian responses in the Indian Palm Squirrel Funambulus pennanti, a highly active diurnal rodent. Physical restraint of squirrels induced stress that led to a significant increase in plasma cortisol, corticosterone and decreased 17β-estradiol level leading to follicular atresia. Ovarian Reactive Oxygen Species (ROS) content, lipid peroxidation (LPO), activities of superoxide dismutase (SOD) and catalase (CAT) enzymes increased in restrained squirrels. Elevated ROS increased the oxidative load that led to ovarian cell death as evidenced by increased Bax and decreased Bcl2 expression causing further decline in Aromatase and ERα proteins.To elaborate the mechanism(s) involved in stress induced glucocorticoid mediated oxidative damages to the ovary we extended our study by exposing ovaries in vitro to the synthetic glucocorticoid dexamethasone (200 μM). We observed that glucocorticoid receptor (GR) expression was significantly increased in dexamethasone treated ovaries in vitro with a decrease in expression of Nrf2 and HO-1 proteins. Melatonin supplementation (10 nM) along with dexamethasone significantly decreased ovarian ROS production, lipid peroxidation and increased antioxidant enzyme activities by improving the expression of Nrf2 and HO-1, reinstating the cellular redox homeostasis. Therefore, it can be suggested that physical restraint induced glucocorticoid and its receptor activation interfered with the ovarian antioxidant defense mechanism. Melatonin via its receptor MT1 significantly alleviated ovarian damages acting as a cytoprotective agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.