Abstract

The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors. An increase of charge-storage density requires structural refinements to balance the trade-offs between the porosity and density of materials, but the limited mechanical properties of carbons usually fail to withstand effective densifying processes and obtain an ideal pore structure. Herein, we design the stiffened graphene of superior bending rigidity, enabling the fine adjustments of pore structure to maximize the volumetric capacitance for the graphene-based electrodes. The in-plane crumples on graphene sheets are found to contribute largely to the bending rigidity, which is useful to control the structural evolution and maintain sufficient ion-accessible surface area during the assembling process. This makes the capacitance of stiffening activated graphene keep 98% when the electrode density increases by 769% to reach 1.13 g cm−3 after mechanical pressure, an excellent volumetric energy density of 98.7 Wh L-1 in an ionic-liquid electrolyte is achieved. Our results demonstrate the role of intrinsic material properties on the performance of carbon-based electrodes for capacitive energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.