Abstract

Waterside cracking of carbon-steel boiler tubes is one of the major safety and efficiency concerns in kraft recovery boilers in the pulp and paper industry, because any water leak into the furnace could cause a smelt-water explosion in the boiler. Failed carbon-steel boiler tubes from different kraft recovery boilers were examined to understand the role of carbon-steel microstructure on crack initiation and crack morphology. A number of carbon-steel tubes showed a deep decarburized layer on the inner surface (water-touched) and also an unusually large grain size at the inner tube surface. In some boiler tubes, cracks were found to initiate in areas with large-grained-decarburized microstructure. However, tubes without such microstructure were also found to have stress assisted corrosion (SAC) cracks. It was found that the decarburization and large grained microstructure may facilitate initiation and growth, but it is not necessary for SAC of carbon-steel boiler tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.