Abstract

Stress is one of the most significant influences on behaviour and performance. The classical account is that stress mainly affects functions of the limbic system, such as learning, memory and emotion. Recent evidence, however, suggests that stress also modulates motor system function and influences the pathology of movement disorders. Most parts of the motor system show the presence of glucocorticoid receptors that render their circuits susceptible to the influence of stress hormones. Stress and glucocorticoids have been shown to modulate temporal and spatial aspects of motor performance. Skilled movements seem to be most prone to stress-induced disturbances, but locomotion and posture can also be affected. Stress can modulate movement through activation of the hypothalamic-pituitary-adrenal axis and via stress-associated emotional changes. The dopaminergic system seems to play a central role in mediating the effects of stress on motor function. This route might also account for the finding that stress influences the pathology of dopamine-related diseases of the motor system, such as Parkinson's disease. Clinical observations have indicated that stress might lead to the onset of Parkinsonian symptoms or accelerate their progression. Glucocorticoids are modulators of neuronal plasticity, thus determining the degree of structural and functional compensation of the damaged motor system. This may particularly affect slowly progressive neurodegenerative diseases, such as Parkinson's disease. That stress represents a significant modulator of motor system function in both the healthy and the damaged brain should be recognized when developing future therapies for neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call