Abstract

Territoriality is a common behavioural adaptation, widespread among ungulates. Here, we tested the hypothesis that territorial individuals have higher glucocorticoid concentrations than non-territorial bachelors, in wild impala (Aepyceros melampus) in the Serengeti ecosystem. We also investigated how the relationship between territoriality and glucocorticoid levels is influenced by environmental context, specifically, food quality, population density (i.e., territory defence intensity), and herd size (i.e., mate defence effort). We collected 139 faecal samples over 4 years and analysed these for faecal glucocorticoid metabolites (FGMs). We used Normalised Difference Vegetation Index (NDVI) as a proxy for food quality, and population density was based on aerial surveys. Territorial males had, on average, higher FGM concentrations than bachelors. Increased food quality did not affect FGM levels in territorial males, but decreased FGM levels in bachelors by 78%. Greater population density increased FGM levels by 47%, but this effect was not different between territorial and bachelor males. Herd size did not affect FGM levels in territorial males. While elevated GC levels are often suggested to be repercussions of being territorial, our findings support the hypothesis that elevated GC levels may be beneficial and act as a facilitator of a male’s reproductive potential. The elevated GC levels may increase the ability of territorial males to maintain a territory by increasing energy mobilisation and metabolic rate, ultimately increasing their reproductive fitness. Appreciating that long-term increases in GC levels are not simply costly but may have an adaptive, potentially facilitating role in an animal’s life history is key to understanding HPA-axis reactivity and its potential in eco-physiological studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.