Abstract

A gradient-enriched shell formulation is introduced in the present study based on the first order shear deformation shell model and the stress gradient and strain-inertia gradient elasticity theories are used for dynamic analysis of single walled carbon nanotubes. It provides extensions of the first order shear deformation shell formulation with additional higher-order spatial derivatives of strains and stresses. The higher-order terms are introduced in the formulation by using the Laplacian of the corresponding lower-order terms. The proposed shell formulation includes two length scale size parameters related to the strain gradients and inertia gradients. The effects of the transverse shear, aspect ratio, circumferential and half-axial wave numbers and length scale parameters on different vibration modes of the single-walled carbon nanotubes are elucidated. The results are also compared with those obtained from a classical shell theory with Sanders–Koiter strain-displacement relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call