Abstract
The TOR (target of rapamycin) pathway is an evolutionarily conserved signaling module regulating cell growth (accumulation of mass) in response to a variety of environmental cues such as nutrient availability, hypoxia, DNA damage and osmotic stress. Its pivotal role in cellular and organismal homeostasis is reflected in the fact that unrestrained signaling activity in mammals is associated with the occurrence of disease states including inflammation, cancer and diabetes. The existence of TOR homologs in unicellular organisms whose growth is affected by environmental factors, such as temperature, nutrients and osmolarity, suggests an ancient role for the TOR signaling network in the surveillance of stress conditions. Here, we will summarize recent advances in the TOR signaling field with special emphasis on how stress conditions impinge on insulin/insulin-like growth factor signaling/TOR signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.