Abstract

In this paper, the stress and magnetostriction induced by flux pinning in an infinite hollow cylinder of type-II superconductor with a non-superconductive filling in its central hole are analytically investigated. Based on the exponent model of critical state of superconductor, the magnetic and current distributions in the hollow cylinder superconductor are obtained firstly. The stress and magnetostriction of the composite superconductive cylinder are then formulated and the magnetoelastic behaviors are characterized analytically. The results show that the hoop stress concentration near the central hole is dominant due to the tension Lorentz force and it is certainly suppressed by filling a non-superconductive material in the hole. Without change of the magnetization characteristic of the superconductor, the filling material provides effective way to remedy the stress state at the verge of the hollow in the superconductive cylinder by adjusting its Young modulus. The magnetostriction of the composite cylinder under the cycled magnetic field is further presented. Effect of the applied maximum field, complete penetration field parameter and filling material parameter on the profile of the cycled magnetostriction for the composite superconducting cylinder is discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.