Abstract

To assess the overestimation of bacterial cell counts in real-time PCR in relation to stress and growth phase, four different strains of L. monocytogenes were exposed to combinations of osmotic stress (0.5 to 8% [vol/vol] NaCl) and acid stress (pH 5 to 7) in a culture model at a growth temperature of 10 degrees C or were grown under optimal conditions. Growth curves obtained from real-time PCR, optical density, and viable count data were compared. As expected, optical density data revealed entirely different growth curves. Good to moderate growth conditions yielded good correlation of real-time PCR data and plate count data (r(2) = 0.96 and 0.99) with similar cell counts. When growth conditions became worse, the numbers of CFU decreased during the stationary phase, whereas real-time-PCR-derived bacterial cell equivalents differed in this regard; the correlation worsened (r(2) = 0.84). However, fitted growth curves revealed that maximum growth rates calculated from real-time PCR data were not significantly different from those derived from plate count data. The overestimation of bacterial cell counts by real-time PCR observed in the stationary phase under higher-stress conditions might be explained by the accumulation of viable but nonculturable bacteria or dead bacteria and extracellular DNA. Considering these results, real-time PCR data collected from naturally contaminated samples should be viewed with caution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.