Abstract

We have developed and employed a 3D particle stress tensor and contact force inference technique that employs synchrotron X-ray tomography and di↵raction with an optimization algorithm. We have used this technique to study stress and force heterogeneity, particle fracture mechanics, contact-level energy dissipation, and the origin of wave phenomena in 3D granular media for the past five years. Here, we review the technique, describe experimental and numerical sources of uncertainty, and use experimental data and discrete element method simulations to study the method’s accuracy. We find that inferred forces in the strong force network of a 3D granular material are accurately determined even in the presence of noisy stress measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.