Abstract

A discrete-layer, high-order theory for the stress and displacement analyses of thick, doubly-curved laminated shells is presented. The displacements of the shell in the theory are assumed to be layer-by-layer high-order polynomial functions through the shell thickness. The displacement continuity conditions at the interface between layers are imposed as constraints and are introduced into the potential energy functional by Lagrange multipliers. A set of governing equations and the admissible boundary conditions are given on the basis of the theory by applying the generalized variational principle. The analytical solutions of cross-ply doubly-curved shells with shear diaphragm supports are obtained by using the Fourier series expansion method. They are then compared with the 3D elasticity solutions and the analytical solutions obtained from other laminated shell theories. The present theory indicates very close agreement with 3D elasticity solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.