Abstract

The Aegean region constitutes the overriding plate of the Africa–Eurasia convergent plate system, in the eastern Mediterranean. To explain the fault kinematics and tectonic forces that controlled rift evolution in the Aegean area, we present fault-slip data from about 900 faults, and summarise the structural analyses of five key structural “provinces”. Five regional tectonic maps are used as the basis for a new stress map for the Aegean region and for discussions on regional geodynamics. Since the Late Miocene, the central Aegean has been affected by WNW- and NE-trending faults which transfer the motion of the Anatolian plate to the southwest, synchronous with arc-normal pull acting on the boundary of the Aegean plate. At the same time, the Hellenic Peninsula has suffered moderate extension by NW-trending grabens formed due to collapse of the Hellenic mountain chain. During intense extension in the southern Aegean in the Plio-Quaternary the arcuate shape of the Hellenic Trench was established. Arc-normal pull in the Aegean plate margin, combined with transform resistive forces along the Hellenic subduction gave rise to widespread strike-slip and oblique-normal faults in the eastern segment and moderate oblique extension in the western segment of the arc. To the north, subduction involves more continental crust and consequently the push of subduction is transmitted to the overriding plate (Hellenic Peninsula), resulting in the formation of NE-trending grabens. WNW-trending grabens in this area are considered to have propagated westward from the Aegean Sea to the Ionian Sea during Plio-Quaternary times, probably acting as pull-apart structures between stable Europe and the rapidly extending southern Aegean area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call