Abstract

Amidst of high demand of energy, the world is seeking alternative energy sources. Wind alone can fulfill most of the energy requirement of the world by its efficient conversion into energy. On efficiency measurement, Horizontal Axis Wind Turbines (HAWT) is the popular to the researchers, but it works best in places where the wind is not disturbed and has high wind power. The inherent advantage of facing the wind direction, design simplicity, less expensive technology for construction, lower wind start-up speeds, easier maintenance, and relatively quietness are turning the focus to Vertical Axis Wind Turbine (VAWT). The low wind speed and non-smooth wind flow regions are attracted for these machines. Savonius turbine is the simplest form of VAWT and operation is based on the difference of the drag force on its blades. The main objective of this study is to analyze a perfect mixture of new and innovative designs of Savonius turbine blades, which can make VAWT more attractive, efficient, durable and sustainable. This is studied by using blade with different numbers in operating in different wind speed. A Computational Fluid Dynamics (CFD) analysis has been used. 2D CAD models of various VAWT geometries are created and tested with CFD software ANSYS/FLUENT with a similar flow-driven motion in a wind tunnel. These simulations provided the aero-dynamic characteristics like shear stress, velocity distribution and pressure distribution. Some physical models with desired properties needed to be fabricated and tested inside tunnel to find the effect of different shapes in real.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call