Abstract

Summary Variable ram blowout prevention (VRBOP) valves are elastomeric material-based flow control devices used in offshore oil drilling applications as the primary safety mechanism to respond to high wellbore pressure emergency situations. During their operation, the elastomer deforms and distorts extensively to form a tight seal around the drillpipe. Because of the large deformation and distortion of the elastomer, developing a Lagrangian-based finite element analysis model to simulate the operation of a VRBOP valve is quite challenging. The finite elements of the Lagrangian finite element mesh degrade in quality because they deform with the material when the deformation becomes excessive. This leads to poor convergence of the numerical solution. In this study, we first demonstrate that the numerical convergence issues can be resolved by using a suite of modeling techniques: explicit integration scheme, Ogden second-order hyperelastic constitutive model for the elastomer, and the selection of appropriate values for element sizes and other modeling parameters. After resolving the convergence issues, we used the model to study the sealing efficiency and material failure of a VRBOP valve for two different operating temperatures and drillpipe diameters. The sealing efficiency is studied using two performance criteria: the uniformity of the sealing pressure around the drillpipe and the magnitude of the overall deformation of the elastomer. For the material failure analysis of the elastomer, we used multiple failure criteria. The results of this study provide many new insights that have the potential to improve VRBOP valve design. For instance, results show that elevated temperature improves the sealing efficiency of a VRBOP valve because of the higher flexibility of the elastomer at elevated temperatures. Likewise, the wellbore pressure also improves the sealing efficiency. However, all these improvements in sealing pressure come with the risk of a higher probability of material failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call