Abstract

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call