Abstract
Non-carious cervical tooth lesions for many decades were attributed to the effects of abrasion and erosion mainly through toothbrush trauma, abrasive toothpaste, and erosive acids. However, though the above may be involved, more recently a biomechanical theory for the formation of these lesions has arisen, and the term abfraction was coined. The aim of this study was to investigate the biomechanics of abfraction lesions in upper canine teeth under axial and lateral loading conditions using a three-dimensional finite element analysis. An extracted human upper canine tooth was scanned by μCT machine (Skyscan, Belgium). These μCT scans were segmented, reconstructed, and meshed using ScanIP (Simpleware, Exeter, UK) to create a three-dimensional finite element model. A 100 N load was applied axially at the incisal edge and laterally at 45° midpalatally to the long axis of the canine tooth. Separately, 200 N axial and non-axial loads were applied simultaneously to the tooth. It was found that stresses were concentrated at the CEJ in all scenarios. Lateral loading produced maximum stresses greater than axial loading, and pulp tissues, however, experienced minimum levels of stresses. This study has contributed towards the understanding of the aetiology of non-carious cervical lesions which is a key in their clinical management.
Highlights
Abfraction has been defined as microstructural loss of dental tissues caused by biomechanical loading which leads to stress concentration in the cervical region of teeth which, in turn, leads to loss of tooth structure [1, 2]
It seems that the role of tensile stresses in the aetiology of cervical lesions started to become more evident after finite element analysis research had indicated that that these stresses were concentrated in the cervical region of teeth
The purpose of this study was to investigate by means of three-dimensional finite element analysis (3D-FEA) the biomechanics of abfraction lesions in upper canine teeth under different loading conditions
Summary
Abfraction has been defined as microstructural loss of dental tissues caused by biomechanical loading which leads to stress concentration in the cervical region of teeth which, in turn, leads to loss of tooth structure [1, 2]. There are three main types of stresses that are placed on teeth during mastication and parafunction: compressive, shear, and tensile stresses [4]. It seems that the role of tensile stresses in the aetiology of cervical lesions started to become more evident after finite element analysis research had indicated that that these stresses were concentrated in the cervical region of teeth. Chen et al indicated that there is proportional linear relational between occlusal forces and induced stresses both buccally and lingually [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.