Abstract

Within a multi-fastener joint, fastener holes may be subjected to the combined effects of bearing loads and loads that bypass the hole to be reacted elsewhere in the joint. The analysis of a joint subjected to search combined bearing and bypass loads is complicated by the usual clearance between the hole and the fastener. A simple analysis method for such clearance-fit joints subjected to bearing-bypass loading has been developed in the present study. It uses an inverse formulation with a linear elastic finite-element analysis. Conditions along the bolt-hole contact arc are specified by displacement constraint equations. The present method is simple to apply and can be implemented with most general purpose finite-element programs since it does not use complicated iterative-incremental procedures. The method was used to study the effects of bearing-bypass loading on bolt-hole contact angles and local stresses. In this study, a rigid, frictionless bolt was used with a plate having the properties of a quasi-isotropic graphite/epoxy laminate. Results showed that the contact angle as well as the peak stresses around the hole and their locations were strongly influenced by the ratio of bearing and bypass loads. For single contact, tension and compression bearing-bypass loading had opposite effects on the contact angle. For some compressive bearing-bypass loads, the hole tended to close on the fastener leading to dual contact. It was shown that dual contact reduces the stress concentration at the fastener and would, therefore, increase joint strength in compression. The results illustrate the general importance of accounting for bolt-hole clearance and contact to accurately compute local bolt-hole stresses for combined bearings and bypass loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.