Abstract

Streptomyces chromosomes are linear DNA molecules and yet their genetic maps based on linkage analysis are circular. The only other known examples of this phenomenon are in the bacteriophages T2 and T4, the linear genomic sequences of which are circularly permuted and terminally redundant, and in which replication intermediates include long concatemers. These structural and functional features are not found in Streptomyces. Instead, the circularity of Streptomyces genetic maps appears to be caused by a completely different mechanism postulated by Stahl & Steinberg (1964, Genetics 50, 531-538)--a strong bias toward even numbers of crossovers during recombination creates misleading genetic linkages between markers on the opposite arms of the chromosome. This was demonstrated by physical inspection of the telomeres in recombinant chromosomes after interspecies conjugation promoted by a linear or circular plasmid. The preference for even numbers of crossovers is probably demanded by the merozygosity of the recombining chromosomes, and by the association between the telomeres mediated by interactions of covalently bound terminal proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.