Abstract

The (p)ppGpp synthetase gene, relA, of Streptomyces clavuligerus was cloned, sequenced and shown to be located in a genomic region that is highly conserved in other Streptomyces species. relA-disrupted and relA-deleted mutants of S. clavuligerus were constructed, and both were unable to form aerial mycelium or to sporulate, but regained these abilities when complemented with wild-type relA. Neither ppGpp nor pppGpp was detected in the S. clavuligerus relA-deletion mutant. In contrast to another study, clavulanic acid and cephamycin C production increased markedly in the mutants compared to the wild-type strain; clavulanic acid production increased three- to fourfold, while that of cephamycin C increased about 2.5-fold. Complementation of the relA-null mutants with wild-type relA decreased antibiotic yields to approximately wild-type levels. Consistent with these observations, transcription of genes involved in clavulanic acid (ceaS2) or cephamycin C (cefD) production increased dramatically in the relA-deleted mutant when compared to the wild-type strain. These results are entirely consistent with the growth-associated production of both cephamycin C and clavulanic acid, and demonstrate, apparently for the first time, negative regulation of secondary metabolite biosynthesis by (p)ppGpp in a Streptomyces species of industrial interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.