Abstract

A simple and convenient method was developed for the preparation of Streptococcus pneumoniae type 14 polysaccharide (Pn14PS)-tetanus toxoid (TT) conjugate vaccines, using terminally linked Pn14PS fragments of different lengths. Native Pn14PS was simultaneously depolymerized and activated for conjugation by partial N-deacetylation followed by nitrous acid deamination which yielded fragments (1.4 to 150.0 kDa) having a free aldehyde at the reducing end. These were then conjugated to TT through their terminal aldehydic groups, using the reductive amination procedure. All of the above conjugates, when injected in rabbits, induced anti-Pn14PS antibodies, whereas the native Pn14PS did not. The amounts of anti-Pn14PS antibodies elicited by these conjugates, as determined by enzyme-linked immunosorbent assay, followed a trend with conjugates containing the highest-molecular-weight Pn14PS eliciting the highest titers. The same trend was also observed in the ability of the antibodies to opsonize and kill live type 14 pneumococci, although the increase in opsonophagocytic activity was more pronounced and did not correlate linearly with increases in antibody titer. Competitive inhibition of the binding of different conjugate antisera to the native Pn14PS, using Pn14PS fragments as inhibitors, established that the conjugates induced antibodies with specificities for different lengths of Pn14PS beginning at 2 repeating units (RU). It was also established, both immunologically and antigenically, that at least 4 RU of Pn14PS were required to form an extended conformational epitope and that approximately 22 RU of Pn14PS were required to duplicate the same epitope on the same saccharide chain. The conformational epitope was found to be essential for the induction of antibodies with high opsonophagocytic activity and that augmentation of opsonophagocytic activity was also dependent on further chain extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.