Abstract

The toll that Streptococcus pneumoniae exacts on the welfare of humanity is enormous. This organism claims the lives of approximately 3700 people daily, the majority of whom are children below the age of 5, and the situation could worsen due to the increasing incidence of pernicious, multiple-antibiotic-resistant strains. Here we report the discovery and characterization of a new allosteric site, shown to be absent in humans, that can be used to switch off an essential pathway in S. pneumoniae, the mevalonate pathway. Diphosphomevalonate (DPM), an intermediate in the pathway, binds with high affinity (K(d) = 530 nM) to mevalonate kinase, the first enzyme in the pathway, and inactivates it. Steady-state and equilibrium binding measurements reveal that DPM binding is noncompetitive versus substrates. DPM binds at an allosteric site, and inhibition cannot be overcome by an increasing substrate concentration. The DPM-binding site is a promising target for the development of new antimicrobial agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.