Abstract

Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies.

Highlights

  • Respiratory tract infections cause a significant global burden of morbidity and mortality in all age groups

  • The apical surface of well-differentiated normal human bronchial epithelial (wd-NHBE) was incubated with S. pneumoniae, but epithelia cultured without antibiotics rapidly deteriorated and died

  • We have shown that specific S. pneumoniae strains enhance Human respiratory syncytial virus (HRSV) infections both in vitro and in vivo

Read more

Summary

Introduction

Respiratory tract infections cause a significant global burden of morbidity and mortality in all age groups. In 2011, the World Health Organization estimated that 1.3 million global deaths were due to acute respiratory infections, of which the majority occurred in developing countries in children under 5 years of age [1]. Of all respiratory pathogens S. pneumoniae or pneumococcus is the leading cause of death, accounting for more than 30% of the cases [1]. Many healthy children and adults carry pneumococci in their upper respiratory tract (URT) and S. pneumoniae colonizes the nasopharynx of up to 45% of children under 3 years of age and up to 20% of adults [2]. Colonization is a prerequisite for subsequent spread, which may result in respiratory tract infection (sinusitis, otitis media, pneumonia), meningitis or sepsis [3]. More than 90 S. pneumoniae serotypes have been identified, and pneumococcal vaccines have been developed containing antigens of up to 23 of the most important serotypes associated with human disease [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call