Abstract

ObjectiveConsidering the diverse mechanisms by which fluoride could affect oral bacteria, this study evaluated the effect of sodium fluoride onStreptococcus mutans transcriptome in the presence of sucrose. MethodsS. mutans UA159 was cultured in 3 different types of media: medium control[TY], sucrose control[TY_S], and sodium fluoride sucrose test[TY_S_NaF]. Triplicates of each group were sampled at exponential phase 3 h after inoculation, total RNA was isolated, mRNA enriched and cDNA paired-end sequenced (Illumina Hi-Seq2500). ResultsGenes related toS. mutans adhesion(gtfB and gtfC), acidogenicity and sugar transport were up-regulated in the presence of sucrose(TY_S) and sucrose/fluoride(TY_S_NaF), whereas gene dltA, D-alanine-activating enzyme, which is related to regulation of non-PTS sugar internalization was down-regulated. Up-regulation of the scrA gene and the PTS fructose-and mannose system, as well as functions such as those involved in stress and defence responses and peptidases; and down-regulation of lacACDG and pyruvate formate-lyase were observed in the TY_S_NaF group, as compared to TY_S group. ConclusionsThe presence of NaF has decreased the overall gene expression level inS. mutans. However, its major effect seems to be the inducing of expression of genes involved in some PEP:PTS systems and other metabolic transporters which imply specific cellular internalisation of sugars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call