Abstract

Fluorescence quenching effect of water-soluble anionic conjugated polymer (CP) (poly[5-methoxy-2-(3-sulfopoxy)-1,4-phenylenevinylene] (MPS-PPV)) by [Re(N-N)(CO)3(py-CH2-NH-biotin)](PF6) [N-N=2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; py-CH2-NH-biotin=N-[(4-pyridyl) methyl] biotinamide] (Re-Biotin) and fluorescence recovery in the presence of streptavidin (or avidin) were investigated using Re-Biotin as quencher tether ligand (QTL) probe. Meanwhile, the mechanisms of fluorescence quenching and recovery were discussed to provide new thoughts to design biosensor based on water-soluble CPs. The results indicate that the sensing mechanisms of streptavidin sensor or avidin sensor, using Re-Biotin as QTL probe, are the same and stable, whether in non-buffer system (aqueous solution) or different buffer systems [0.01mol·L−1 phosphate buffered solution (pH=7.4), 0.1mol·L−1 ammonium carbonate buffered solution (pH=8.9)]. There exists specific interactions between streptavidin (or avidin) and biotin of Re-Biotin. Fluorescence quenching and recovery processes of MPS-PPV are reversible. Mechanisms of Re-Biotin quenching MPS-PPV fluorescence can be interpreted as strong electrostatic interactions and charge transferences between Re-Biotin and MPS-PPV. Fluorescence recovery mechanisms of Re-Biotin—MPS-PPV system can be interpreted as specific interactions between streptavidin (or avidin) and biotin of Re-Biotin making Re-Biotin far away from MPS-PPV. Avidin or strptavidin as re-Biotin probe can not only be quantitatively determinated, but also be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.