Abstract

This paper describes the measurement of the binding affinities of two bifunctional RNA aptamers to their respective ligands. The aptamers comprise either a theophylline or malachite green binding sequence fused to a streptavidin binding sequence. These bifunctional aptamers are shown to bind simultaneously to both the small ligand and to streptavidin whether in free solution or on gold surfaces. Binding isotherms for both interactions were measured by different physiochemical techniques: surface plasmon resonance, fluorescence spectroscopy and dynamic light scattering. Both qualitatively and quantitatively there is little difference in binding affinities between the bifunctional aptamers and their monofunctional components. The respective Kd values for streptavidin binding in the monofunctional aptamer and in the theophylline bifunctional aptamer were 12nM and 65nM, respectively whilst the Kd values for theophylline binding in the monofunctional aptamer and the streptavidin bifunctional aptamer were 300nM and 120nM. These results are consistent with treating each aptamer sequence as a module that can be combined with others without significant loss of function. This allows for the use of streptavidin based immobilization strategies without either the cost of biotinylated dNTPs or the variable yields associated with the chemical biotinylation of RNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.