Abstract

Measurements of the UV-Vis absorbance (Abs) and intensity of fluorescence emission (Fluor), as well as of concentrations of total or dissolved organic carbon (OC) in aqueous samples are commonly used to estimate the potential for disinfection byproducts (DBPs) formation during water chlorination. In this work, based on 574 linear associations collected from 70 experimental research papers published over the period of 1997-2019, the strengths of the correlations of Abs, Fluor, and OC with DBPs concentrations are compared. The correlations were expressed as approximately normally distributed Z-scores using Fisher variance-stabilizing transformation. The effects of specific prediction method, chlorination agent, water source, and DBPs type, with consideration of possible effects due to the presence of bromide, are examined against Z-scores by ANOVA, testing main effects and some variables interactions. The performed analysis is a first attempt to expose differences and patterns in correlation strengths associated with DBPs formation, based on systematically covered broad existing literature. Abs and OC concentration of water samples tend to demonstrate the strongest correlations with DBPs formation as compared with specific UV absorbance (SUVA) or intensity of fluorescence emission. Correlations of DBPs formation during chloramination demonstrated weaker strengths as compared with other chlorination agents, suggesting more caution in predicting DBPs concentrations, based on simple descriptors such as Abs, OC, and Fluor. In a series of different water types, the correlations with DBPs formation are expected to be enhanced, when wastewater is chlorinated. Non-fluorescent matter may be an important contributor to DBPs formation during water chlorination. When fluorescence intensity is considered as a predicting tool, choosing humic-like rather than proteinaceous fluorescence may enhance the strengths of the correlations with DBPs formation. Different performances of Abs, OC, and Fluor in correlating with DBPs formation may be beneficial for their concurrent use helping to optimize removal of different DBPs precursors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call