Abstract

The manufacturing technologies for electrodes have a great influence on the performance of Li-ion batteries. Manufacturing procedures largely determine the microstructure of electrodes, and thus affect how active materials are involved in the electrochemical reactions. However, the usage of solvent in the dominant slurry-casting method weakens its competence on obtaining desired microstructures and properties. In this study, an improved adhesion strength is achieved during the fabricaion of graphite anodeswithour solvent-free manufacturing method. Through dry-spraying an interfacial "adhesion enhancer" layer between the current collector and the electrode coating, the mechanical strength (from 0.5 kPa to over 83.0 kPa) and electrochemical performance (from 24.2% to 92.4% as the capacity retention in 100 cycles) are significantly improved. Results here demonstrate a simple and economical route to practically control the microstructure of electrodes during manufacturing and potentiate the strategy enabled by dry-spraying to design and manufacture advanced batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.