Abstract

A hallmark of addiction is the loss of control over drug intake, which is seen only in a fraction of those exposed to stimulant drugs like cocaine. The cellular mechanisms underlying vulnerability or resistance to compulsive drug use are still unknown. Here we show that individual variability in the development of highly motivated and perseverative behavior toward cocaine is associated with synaptic plasticity in medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) in the nucleus accumbens of mice. Potentiation of glutamatergic inputs onto indirect pathway D2-MSNs was associated with resilience towards compulsive cocaine seeking. Inhibition of D2-MSNs using a chemicogenetic approach enhanced the motivation to obtain cocaine while optogenetic activation of D2-MSNs suppressed cocaine self-administration. These results indicate that recruitment of D2-MSNs in nucleus accumbens functions to restrain cocaine self-administration and serves as a natural protective mechanism in drug-exposed individuals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.